Variable Precision Analysis
for FPGA Synthesis

Mark L. Chang, Scott Hauck
University of Washington

Field Programmable Gate Arrays

L

* Programmable logic

blocks and

Interconnection

* Infinitely and quickly

reconfigurable

 (Can be orders of

magnitude faster than

general-purpose

Processors

Design Flow

DL Com+p|Ier
Description Synthesizer

s [

]
a L

Why Precision Analysis?

* Algorithm originally written for general-
puUrpose processors

 Want to implement on an FPGA

* Two very different computing paradigms

.

General-Purpose Processor

* Word-level device

e Data type abstractions

PC

— cha

r,

int

, double

» Address

Instruction
memory

Instruction

1

» Data

Register #
Registers
Register #

Register #

Address

» Data

Data
memory

L

FPGA

 Bit-level device

 Bit-exact representation in circuit

b ® ¢)] Esum
cl
) 52

i c_out

]
a L

Conversion 1s Difficult

* Entire width of datapath not necessarily
used

* Need to match datapath size to algorithm
* Maintain correctness
* Achieve optimality

» Software designers rarely think about
overflow and underflow

] [
- 1

1
a L

Manual Precision Analysis

* What are the provable precision
requirements of my algorithm?

* What are the actual precision requirements
of my data sets?

* What are the effects of fixed-precision on
my results?

* Where should I optimize?

] s [
-]

1
a L

Precis: A Design-Time Tool

* Provable precision requirements:
Propagation engine

 Actual precision requirements:
Range finding

» Effects of fixed-precision:
Simulation

* Where should I optimize:
Slack analysis

] o [
-]

The Least Significant Bit

.

N

27 =255

 Maximum range = 255

* Quantized into multiples of 0.125
* Need methodology to determine the “best”

LSB position

/

23 =0.125

o [

.

Methodology

* Typically, truncation 1s used to model a
fixed-point datapath

1

0

0

1

l

* Instead, replace with known constants

|

l

0

0

0

L

1
a L

Methodology

* Reducing input bit widths to an operator
reduces the area requirement

* This same relationship holds 1f we
substitute zeros instead of truncate

» Use wires to represent substituted zeros

e Almost free 1n terms of area

Error Models
e Zero substitution introduces error
4,0, 0.27 -1
0.2 +29 -2
C
Bn Oq 0.279 -1
4,0, 0..27 -1
>3; CO..AEq +BE —E E,
E =27_1
Bn Oq 0.279 -1 !
E,=2'-1

Area Models

S

model
& B Cour
0 1,3 ,2 0,3 1,1 0,2 1,0 0,1
) I N R B B
HA — FA — FA HA
* Compare againstreal > | > | > 2
hardware FA | FA | FA || HA
implementation | 7| | 7
’, FA FA — FA — HA
| | | |
p7 po p5 p4 p3 p2 pl

0

e Utilize 2-LUT

0,0

Adder Area Model

Normalized Area

Adder Model vs. Virtex

1.2

0.8

0.6 -

0.4

0.2

—e— Normalized LUTs
—m— Normalized Model

o1 2 3 4 5 6 7 8 9 10 11 12 13 14

Multiplier Area Model

Normalized Area

Multiplier Model vs. Virtex

1.2

~—

—e— Normalized LUTs
—m— Normalized Model

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Zeros

Steering Error

Assume all inputs are 4-bit

77 2-LUTs for base implementation

Steering Error

Tolerate 0..8 error on output

Steering Error

Steer toward shorter branch

57 2-LUTs

Steering Error

Steer toward longer branch

47 2-LUTs

Steering Error

Balanced error

52 2-LUTs

1
a L

Guidelines for Precision
Optimization

* Area benefits are quantized to the number of
whole-bit substitutions that can be made

— An error range of 0..2 can not be fully utilized at a
single mput

— An error range of 0..2 can be utilized if split between
two 1nputs

— If error cannot be distributed completely, overall output
error can be reduced (take up slack)

 Area benefits increase as error 1s steered toward
longer branches

— More opportunity to reduce the area of ancestor nodes

] 2 [
-]

Rethinking Error

* With straight substitution of zeros, the error range
1s entirely positive

4,0, 0.27 -1
0.27+29-2
C
Ban 0.279 -1

« Reconsider the error as the net distance from the
real value

* Achieves twice the error range while maintaining
the same relative level of accuracy

] 5 [

]
a L

Renormalization

* Can bias the output error range by
substituting ones and zeros strategically

4,1, — (27 -1)..0

— (27 =1).279 -1
c ()
Bnoq 0.29 -1
0..27 -1
s £, (2QA-E) £y (2B+E)
~-—2(2A-E,)).—2Q2B+
c 2) !
B1 ~_(a_
- nlg (29-1)..0 e

Renormalization

 Alternatively, renormalize later by adding a
constant to bias the error range

4,0, 0.27 -1

m> p
0.2 +27-2
C
—(279-1)..27 -1
Bnoq O..2q—1 >9;C()

1

q

1
a L

Conclusions

 Precision optimization of circuit datapath 1s
a major implementation detail

e Poor support from a tools perspective

* Proposed methodologies for precision
optimization of least significant bit position
— Area and Error models
— Optimization guidelines

— Renormalization alternatives

Future Directions

1
a L

Active vs. Lazy Renormalization

| L
Active vs. Lazy Renormalization

*When/How should we perform renormalization?

| L
Active vs. Lazy Renormalization

*Do the primary inputs give us enough control?

2707977

| L
Active vs. Lazy Renormalization

*When do we need to insert bias points?

2707977

| L
Active vs. Lazy Renormalization

*What 1s the area impact of various types of
o renormalization?

| L
Active vs. Lazy Renormalization

*What 1s the area impact of various types of
A renormalization?

| L
Active vs. Lazy Renormalization

*]s there a “best” way to renormalize?

1
a L

Renormalization Approaches

 Determine area effects of renormalization
— Single operator node (active)
— Constant bias (lazy)

e Determine area effects these
renormalization methods have on child
nodes

 With area and error, we can deduce an
algorithm for type and placement

] 5 [
-]

